SOV.AI
  • Data & Screens
  • GET STARTED
    • Blog (Screener)
    • 🚀Quick Start
    • ⭐Tutorials
    • 💻Installation
    • ⚒️Release Notes
    • 🔘About
  • REALTIME DATASETS
    • Equity Datasets
      • Accounting Data
      • Bankruptcy Predictions
      • Employee Visa
      • Earnings Surprise
      • Congressional Data
      • Factor Signals
      • Financial Ratios
      • Government Contracts
      • Institutional Trading
      • Insider Flow Prediction
      • Liquidity Data
      • Lobbying Data
      • News Sentiment
      • Price Breakout
      • Risk Indicators
      • SEC Edgar Search
      • SEC 10K Filings
      • Short Selling
      • Wikipedia Views
      • Patents Data
    • Economic Datasets
      • Asset Rotation
      • Core Economic Data
      • ETF Flows
      • Government Traffic
      • 🏳️Turing Risk Index
    • Sectorial Datasets
      • Airbnb Data
      • Box Office Stats
      • CFPB Complaints
      • Phrama Clinical Trials
      • Request Datasets
  • Asset Managment
    • Signal Evaluation
    • Weight Optimization
    • Screens and Filters
  • Pattern Recognition
    • Pairwise Distance
    • Anomaly Detection
    • Clustering Panels
  • Feature Processing
    • Extract Features
    • Neutralize Features
    • Select Features
    • Dimensionality Reduction
    • Feature Importance
  • Time Series
    • Nowcasting Series
    • TS Decomposition
    • Time Segmentation
  • Dashboard Examples
    • 🔰Bankruptcy Prediction
    • 🛰️Turing Risk Index
  • IMPORTANT LINKS
    • ⚙️Main Website
    • 👮Forum and Issues
    • 🙋Web Application
    • 📤LinkedIn
    • 🟢Buy Subscription
Powered by GitBook
On this page
  • Install
  • Full package
  • Data package
  • Environment
  • Dependencies
  • Docker

Was this helpful?

  1. GET STARTED

Installation

PreviousTutorialsNextRelease Notes

Last updated 9 months ago

Was this helpful?

Install

import sovai as sov
sov.token_auth(token="add_your_subscriber_token_here")

Full package

pip install sovai[full]

The best way to familiarize yourself with this powerful library is to head straight to the

Data package

If you only want to download data into pandas please use the much lighter package.

pip install sovai
import sovai as sov
sov.data("query")

Environment

Sovai is tested and supported on the following 64-bit systems:

  • Python 3.6 – 3.11

  • Python 3.9 for Ubuntu only

  • Ubuntu 16.04 or later

  • Windows 7 or later

# Create a virtual environment
python -m venv yourenvname

# Activate the virtual environment
source yourenvname/bin/activate  # For Unix/Linux
yourenvname\Scripts\activate  # For Windows

# Install sovai
pip install sovai

# Create notebook kernel
python -m ipykernel install --user --name yourenvname --display-name "display-name"

Dependencies

Select the tab

numpy>=1.20

scipy>=1.0

pandas>=1.0

python-dateutil>=2.8

python-dotenv>=0.10

requests>=2.20

joblib>=1.0

pyarrow>=5.0

matplotlib>=3.0

plotly>=5.0

scikit-learn>=1.0

numba>=0.50

boto3>=1.20

dash>=2.0

great-tables>=0.9

polars>=0.20.30

ruptures>=1.0

shap>=0.40

skfolio>=0.3

statsforecast>=1.0

tensorly>=0.6

openai>=1.0

mfles>=0.2

pexpect>=4.9.0

lightgbm>=4.5.0

ipywidgets>=8.1.3

polars-talib==0.1.3

dash-bootstrap-components>=1.6.0

poetry>=1.0

pytest>=6.0

flake8>=3.9

black>=21.0

isort>=5.0

mypy>=0.900

Docker

Docker uses containers to create virtual environments that isolate a Sovai installation from the rest of the system. Sovai docker comes pre-installed with a Notebook environment that can share resources with its host machine (access directories, use the GPU, connect to the Internet, etc.). The Sovai Docker images are tested for each release.

docker run -p 8888:8888 sovai/slim

For docker image with full version:

docker run -p 8888:8888 sovai/full

In order to avoid potential conflicts with other packages, it is strongly recommended to use a virtual environment, e.g. .

Default dependencies that are installed with pip install sovai are .

💻
tutorial section.
python3 virtualenv
listed here