Dimensionality Reduction
Implements multiple reduction techniques including PCA, SVD, Factor Analysis, Gaussian Random Projection, and UMAP.
Reduction Techniques
Usage Examples.
Authenticate and load data
import sovai as sov
sov.token_auth(token="your_token_here")
df_mega = sov.data("accounting/weekly").select_stocks("mega").date_range("2018-01-01") 1. Basic Usage with PCA
# Reduce dimensions using PCA
result = df_mega.reduce_dimensions(method="pca", n_components=10)
print(result.head())2. Using Gaussian Random Projection
3. UMAP with Verbose Output
4. Factor Analysis
Advanced Usage
Performance Considerations
Last updated